PHOTOCYCLIZATION OF SUBSTITUTED 1,4-DISTYRYLBENZENES TO DIBENZ [a,h] ANTHRACENES

J. BLUM and M. ZIMMERMAN

Department of Organic Chemistry, Hebrew University, Jerusalem, Israel

(Received in the UK 23 June 1971; Accepted for publication 25 September 1971)

Abstract—A photochemical route for the synthesis of 7,14-dimethyl-, 7,14-dichloro-, and 7,14-difluoro-dibenz[a,h]anthracene has been investigated. The 7,14-dimethyl derivative was obtained by photocyclization of either 2,5-distyryl- or 2,5-bis-(2-iodostyryl)-p-xylene, while the dichloro- and difluoro-dibenz[a,h]anthracene could be prepared only from the corresponding 2,5-bis-(2-iodostyryl)-1,4-dihalobenzenes. 2,5-Distyryl-1,4-dibromobenzene suffers debromination upon irradiation.

FOLLOWING OUR FINDINGS¹ that benz[a]anthracene derivatives, fluorinated in the so-called L region, can be prepared by photocyclization of appropriate 1,2-diaryl-ethylenes, we extended our studies to include the synthesis of 7,14-difluorodibenz[a,h]-anthracene (1, R = F).

Dietz and Scholz² and Laarhoven *et al.*³ have shown that irradiation of the unsubstituted 1,4-distyrylbenzene(2, R = H) does not lead to oibenz[*a,h*]anthracene (1, R = H) and have suggested that this is due to the low ΣF^* -values and localization energies of the atoms involved in the photocyclization of the intermediary monostyryl-compound (3, R = H) to 1. It would be expected that if the 2- and 5-positions of the distyrylbenzene are blocked as in 2 ($R \neq H$), the dibenz[*a,h*]anthracene skeleton would be formed.

275

Indeed, *trans*, *trans*-2,5-distyryl-*p*-xylene (2, R = Me), which is prepared easily from 2,5-bis(bromomethyl)-*p*-xylene (7, R = Me)⁴ and benzaldehyde by the Wittig-Arbuzov reaction, gave upon irradiation with a 450 Watt Hanovia high pressure mercury lamp 23% of 7,14-dimethyldibenz[*a*,*h*]anthracene (1, R = Me) after 1 hr. It is noteworthy that although demethylation has been reported to occur during the photolysis of *o*-methylstilbenes,⁵ and 1,4-distyrylbenzene is cyclized mainly to dibenzo[*c*,*g*]phenanthrene and benzo[*g*,*h*,*i*]perylene,^{2,3} we did not isolate **4** or **5**.

Unfortunately the conditions of photolysis useful in the case of the dimethyl compound, proved inapplicable to the halogenated distyrylbenzenes (2, R = Hal, including F), as the halogen atoms were eliminated during and after the photocyclization. Irradiation from a UV source of low intensity (75 W), did not cause significant dehalogenation of the chloro- and fluoro-distyrylbenzenes, but the cyclization to 1 proceeded extremely slowly.

We succeeded in preparing the halo-substituted dibenz[a,h]anthracenes, when Kupchan's modification⁶ of the photocyclization of stylbenes was applied: 2,5-difluoro-*p*-xylene (6, R = F)⁷ was converted in two steps to tetraethyl 2,5-bis(diethyl-phosphonomethyl)-1,4-difluorobenzene (8, R = F), which condensed with *o*-iodobenzaldehyde to give *trans*, *trans*-2,5-bis-(2-iodostyryl)-1,4-difluorobenzene (9, R = F). Irradiation for 5 hr caused cyclodehydroiodination to 7,14-difluorodibenz[a,h]-anthracene (1, R = F) in 31% yield. Prolonged photolysis gave increasing quantities of monofluoro- and fluorine-free hydrocarbons.

7,14-Dimethyl and 7,14-dichloro-dibenz[a,h]anthracene could be prepared in the same manner from *trans*, *trans*-2,5-bis-(2-iodostyryl)-p-xylene (9, R = Me) and *trans*, *trans*-2,5-bis-(2-iodostyryl)-1,4-dichlorobenzene (9, R = Cl), respectively, while the photocyclization of *trans*, *trans*-2.5-bis-(2-iodostyryl)-1,4-dibromobenzene (9, R = Br) (as well as that of 2, R = Br) was accompanied by extensive debromination. The dibromo-compound (1, R = Br) could not be obtained analytically pure.

The structure of the 7,14-dihalodibenz[a,h]anthracenes was proved by the close resemblance of their electronic spectra to those of the halogen-free parent compound and of 7,14-dimethylbenz[a,h]anthracene (Table 1). The latter compound (obtained

				TABLE 1							
Compound						Electro	nic Spectra,	λ _{max} nm (log ¢)		
Dibenz[a,h]anthracene 2 (1, R = H) ^{α-b} (4.7	273 70)	285 (4-90)	295 (5·20)	306 (4-40)	320 (4·30)	332 (4·25)	349 (4·20)	364 (2·70)	373 (3-00)	384 (2·60)	3 94 (3·10)
7,14-Difluorodibenz[a,h]anthracene 2 (1, R = F) ^c (4·6	273 62)	278 (4·77)	290 (4-99)	299 (5-04)	313 (4·11)	329 (4·15)	349 (4·28)	362 (4·26)	378 (3·78)		399 (3·73)
7,14-Dichlorodibenz[a,h]anthracene (1, $R = CI$)*		278 (4-30)	294 (4·45)	306 (4·53)		332 (4-06)	348 (4-09)	366 (4·10)		386 (3-98)	412 (3·45)
7,14-Dibromodibenz[a, <i>h</i>]anthracene (1, R = Br) ^d . ^c		287	296	306		330	348	365		385	411
7,14-Dimethyldibenz[a,h]anthracene 2 (1, R = CH ₅) ^{6,1} (4-6	273 08)	282 (4·12)	293 (4·28)	305 (4-42)	315 (3·62)	332 (3·46)	351 (3·61)	369 (3-91)		390 (3·97)	410 (2·85)
7,14-Dimethyldibenz[<i>a</i> , <i>h</i>]anthracene (1, R = CH ₃) ^{a.0}		283 (4·16)	293 (4-90)	306 (4-95)	322 (4-08)	335 (4-08)	352 (4·15)	370 (4·15)		291 (2-90)	408 (2·70)

- EtOH as solvent.
 After Mayneord and Roe.⁹
 - CHCla as solvent.

- A Not analytical pure.
 Cyclohexane as solvent.
 f Obtained from 2, (R = Me) and from 9 (R = Me).

Photocyclization of substituted 1,4-distyrylbenzenes

by both the methods described above) was identical with an authentic sample prepared by the "classical" route from 7,14-dibenz[a,h]anthraquinone.⁸

EXPERIMENTAL

trans, trans-2,5-*Distyryl*-p-*xylene* (2, R = Me). To a stirred soln of 4.06 g of phosphate 8 (R = Me)⁴ in 70 ml dry DMF, was added dropwise 0.6 g NaOMe in 30 ml of the same solvent. After 5 min 2.12 g freshly distilled benzaldehyde was added at 25-30°. After 30 min at the same temperature, the mixture was poured on crushed ice to yield 36% of 2, (R = Me) as yellow crystals; m.p. 200° (from C₆H₆ and EtOH); λ_{max} (CHCl₃) nm (log ϵ) 343 (4.30); ν^{KBr}_{max} 965 cm⁻¹. (Found: C, 92.7; H, 7.0. Calc. for C₂₄H₂₂: C, 92.9; H, 7.1%).

trans, trans-2,5-Bis-(2-iodostyryl-)-p-xylene (9, R = Me). A soln of 2.3 g 8 (R = Me) and 0.3 g NaOMe in 70 ml DMF was treated as above with 2.32 g o-iodobenzaldehyde¹⁰ in 40 ml of the same solvent at 25° to yield 1.52 g (54%) of bright yellow crystals; m.p. 221-22° (from C₆H₆ and EtOH). λ_{max} (CHCl₃) nm (log ϵ) 340 (4.49); $\nu^{\text{KBr}}_{\text{max}}$ 960 cm⁻¹. (Found: C, 51.3; H, 3.7; 1, 44.7. Calc. for C₂₄H₂₀I₂: C, 51.3; H, 3.6; I, 45.2%).

7,14-Dimethyldibenz[a,h]anthracene (1, R = Me). (a) A mixture of 155 mg 2 (R = Me), 64 mg I₂ and 150 ml purified cyclohexane was irradiated in a 3-necked photolysis tube of quartz, equipped with a gas inlet for N₂, a Teflon magnetic stirrer and a 450 Watt Hanovia high pressure mercury lamp. After 60 min, the UV spectrum of the soln ceased to change and the illumination was discontinued. The mixture was washed with NaHSO₃ aq, dried and concentrated. The residue was chromatographed on alumina under N₂ (mixtures of hexane-C₆H₆ serving as eluent). After recrystallization from C₆H₆ and EtOH 35 mg (23%) of 1 (R = Me) was obtained; m.p. and m.m.p. with an authentic sample⁸ 204-205°.

(b) In the same apparatus as in (a), a soln of 200 mg 9, (R = Me) in 150 ml purified cyclohexane was irradiated for 90 min. Column chromatography of the mixture gave 33 mg (23%) of 1 (R = Me) identical with the hydrocarbon from (a).

2,5-Bis(bromomethyl)1,4-difluorobenzene (7, R = F). A mixture of 27.4 g 2,5-difluoro-p-xylene (6, R = F) (prepared in four steps from 2,5-dimethylaniline⁷), 76.4 g NBS, 0.5 g benzoyl peroxide and 250 ml CCl₄ was refluxed until all the reagent had decomposed (2 hr) to yield 27.8 g (48%) of colorless crystals; m.p. 53-55° (from EtOH). $\nu^{\text{KBr}}_{\text{max}}$ 1210 cm⁻¹ (C - F). (Found: C, 31.8; H, 2.3; Br, 52.9. Calc. for C₈H₆Br₂F₂: C, 32.0; H, 2.0; Br, 53.3%).

2,5-Bis(diethylphosphonatomethyl)1,4-difluorobenzene (8, R = F). A mixture of 8.7 g triethyl phosphite and 7.5 g 7 (R = F) was refluxed until evolution of EtBr ceased (20 min). The excess reagent was removed by distillation at 0.5 mm, and the residue triturated with hexane to give 9.3 g (90%) of yellow crystals of m.p. 74-75° (from hexane). ν^{CHC13}_{max} 1275 cm⁻¹ (P - O); 1200 cm⁻¹ (C - F). (Found: C, 46.2; H, 6.1. Calc. for C₁₆H₂₆F₂O₆P₂: C, 46.4; H, 6.3%).

trans, trans-2,5-Bis-(2-iodostyryl)-1,4-difluorobenzene (9, R = F) was prepared in 53% yield in the same way as 9 (R = Me) from 4.14 g 8 (R = F) and 4.64 g o-iodobenzaldehyde. Bright yellow crystals; m.p. 227-230° (from C₆H₈). λ_{max} (cyclohexane) nm (log ϵ) 350 (4.40); ν^{Nujol}_{max} 960 cm⁻¹; NMR (CDCl₃) τ ppm 2.85 (m, aromatic protons), 3.48 (m, trans-ethylenic protons). (Found: C, 46.6; H, 2.7; F, 7.1. Calc. for C₂₂H₁₄F₂I₂: C, 46.3; H, 2.5; F, 6.7%).

7,14-Difluorodibenz[a,h]anthracene (1, R = F). A soln of 560 mg of 9 (R = F) in 400 ml cyclohexane was placed in a 4.5 × 32 cm quartz tube of a Rayonet photochemical reactor fitted with 16 75 Watt UV lamps at a distance of 12 cm from the reaction vessel. N₂ was bubbled through the soln. After 5 hr the soln was washed with NaHSO₈ aq, dried and concentrated. The residue was chromatographed on alumina (hexane-C₆H₆ mixtures serving as eluent). The third fraction of the eluate afforded 96 mg (31%) of 1 (R = F) as pale yellow crystals; m.p. 213-215° (from C₆H₆). $\nu^{\rm KBr}_{max}$ 1250 cm⁻¹ (C - F). The NMR spectrum contained only a multiplet in the aromatic region (r ppm 2.86). (Found, C, 84.4; H, 3.8; H, 11.7. Calc. for C₂₂H₁₂F₂: C, 84.1; H, 3.8; F, 12.1%).

The 2,4,7-trinitrofluorenone complex was prepared in, and recrystallized from, C_6H_6 ; red-brown needles, m.p. 210°. (Found: C, 66.9; H, 3.0; F, 5.8. Calc. for $C_{85}H_{17}F_2N_8O_7$: C, 66.9; 2.7; F, 6.0%).

2,5-Bis(bromomethyl)-1,4-dichlorobenzene (7, R = Cl) was prepared from 2,5-dichloro-p-xylene (6, R = Cl)¹¹ in the same way as the 2,5-diffuoro-analog 7 (R = F). Colorless crystals, m.p. 112-114° (from EtOH). (Found: C, 29.0; H, 1.8. Calc. for C₈H₆Bt₂Cl₂: C, 28.8: H, 1.8%).

2,5-Bis(diethylphosphonatomethyl)-1,4-dichlorobenzene (8, R = Cl) was obtained in 96% yield from the foregoing dibromide (7, R = Cl) (10.5 g) and triphenyl phosphite (10.8 g) by the procedure described for the difluoro-compound 8 (R = F). Yellow crystals; m.p. 87-89° (from petroleum ether). (Found: C, 42.5; H, 5.5; Cl, 15.8. Calc. for $C_{16}H_{26}Cl_2O_6P_2$: C, 42.9; H, 5.8; Cl, 15.9%).

trans, trans-2,5-*Bis*-(2-*iodostyryl*)-1,4-*dichlorobenzene* (9, R = Cl) was obtained in 83% yield from phosphonate 8 (R = Cl), (2·24 g) and o-iodobenzaldehyde (2·32 g). Bright yellow crystals; m.p. 250-252° (from xylene). λ_{max} (cyclohexane) nm (log ϵ) 340 (4·39); ν^{KBr}_{max} 958 cm⁻¹. (Found: C·43·9; H, 2·5. Calc. for C₂₂H₁₄Cl₂I₂: C, 43·8; H, 2·3%).

7,14-Dichlorodibenz[a,h]anthracene (1, R = Cl). Irradiation of 318 mg of 9 (R = Cl) in 300 ml cyclohexane, under the conditions described for the difluoro-analog, afforded after 4 hr an orange semi-solid that was chromatographed on alumina (hexane-C₆H₆ mixtures serving as eluent). The eighth fraction of the eluate was recrystallized from C₆H₆ to yield 60.5 mg (33%) of 1 (R = Cl) as yellowish needles; m.p. 70-72°. (Found: C, 76.3; H, 3.5; Cl, 20.3. Calc. for C₂₂H₁₂Cl₂: C, 76.1; H, 3.5; Cl, 20.5%).

The first fraction of the eluate was a chlorine-free hydrocarbon that did not show the characteristic UV spectrum of dibenz[a,h]anthracene; fractions 5-7 showed absorptions similar to 1 (R = Cl) but did not contain the required amount of chlorine.

2,5-Bis(bromomethyl)-1,4-dibromobenzene (7, R = Br). Bromination of 26.4 g 2,5-dibromo-p-xylene (6, R = Br)¹¹ with 38.2 g NBS in 250 ml CCl₄, afforded 30.0 g (71%) of colorless crystals; m.p. 145-147° (from EtOH). (Found: C, 23.0; H, 1.4. Calc. for C₈H₆Br₄: C, 22.8; H, 1.4%).

2,5-Bis(diethylphosphonatomethyl)-1,4-dibromobenzene (8, R = Br) was formed in 65% yield from 21·1 g of 7 (R = Br) and 18·3 g triethyl phosphite by the procedure described above. Yellow crystals: m.p. 88-90° (from petroleum ether). (Found: C, 35·5; H, 4·5. Calc. for C₁₆H₂₆Br₂O₆P₂: C, 35·8; H, 4·8%).

trans, trans-2,5-*Distyryl*-1,4-*dibromobenzene* (2, R = Br). The foregoing phosphonate (5.36 g), 1.2 g NaOMe and 2.12 g benzaldehyde in 80 ml DMF gave 2.98 g (68%) of yellow crystals; m.p. 225-227° (from toluene). λ_{max} (CHCl₃) nm (log ϵ) 343 (4.37); ν^{KBr}_{max} 970 cm⁻¹. (Found: 59.7; H· 3.7; Br, 36.3. Calc. for C₂₂H₁₆Br₂: C, 60.0; H, 3.6; Br, 36.4%).

Attempts to convert 2, (R = Br) into 2,5-distyryl-1,4-dideuteriobenzene (2, R = D) failed. Reaction of the dibromo-compound with either CaO₂, Zn powder and D₂O^{12,13}, or with excess BuLi, followed by hydrolysis with D₂O, did not lead to a bromine-free product. In both methods 10% of the monodeuterated compound of m.p. 110–112° was obtained. (Found: C, 72·9; H, 4·8. Calc. for C₂₂H₁₆BrD: C, 72·9; H, 4·7%). (The total hydrogen content is calculated as ¹H in accordance with the analytical method)

trans, trans-2,5-Bis-(2-iodostyryl)-1,4-dibromobenzene (9, R = Br). As in the case of the dimethylcompound 9 (R = Me), 2.68 g 8 (R = Br), 2.32 g o-iodobenzaldehyde and 0.60 g NaOME gave 1.75 g (51%) of yellow crystals; m.p. 300° λ_{max} (CHCl₃) nm (log ϵ) 335 (4.42); $\nu^{\text{KBr}}_{\text{max}}$ 960 cm⁻¹. (Found: C, 38.5; H, 1.9; Br, 23.2. Calc. for C₂₂H₁₄Br₂I₂: C, 38.2; H, 2.0; Br, 23.1%).

Irradiation of 2 and 9 (R = Br). When a soln of 880 mg 2 (R = Br) and 508 mg l₂ in 400 ml cyclohexane was irradiated for 60 hr under the conditions described for 9 (R = F) [or a soln of 346 mg 9 (R = Br) in 300 ml cyclohexane—for 4 hr] characteristic bands of the dibenz[*a*,*h*]anthracene system appeared in the UV spectra. In both cases, however, chromatography on alumina gave mainly bromine-free and monobromo-compounds. From 2 and 9 (R = Br) there were obtained 42 and 18 mg respectively, in the eighth fraction of the eluate that analysed approximately for C₂₂H₁₂Br₂, but could not be purified to a higher degree [mol. wt. (mass spectrograph) 436]. M.p. 200–204° (unsharp); λ_{max} (cyclohexane) nm (log ϵ) 287 (4.60), 296 (4.75), 306 (4.81), 330 (4.28), 348 (4.34), 365 (4.40), 385 (4.30), 411 (3.08).

Acknowledgement-The authors wish to thank Professor E. D. Bergmann for his advice.

REFERENCES

- ¹ J. Blum, F. Grauer and E. D. Bergmann, Tetrahedron 25, 3501 (1969)
- ² F. Dietz and M. Scholz, *Ibid.* 24, 6845 (1968)
- ³ W. H. Laarhoven, Th. J. M. H. Cuppen and R. J. F. Nivard, Ibid. 26, 1069 (1970)
- ⁴ B. P. Lugovkin and B. A. Arbuzov, Doklady Akad. Nauk S.S.S.R. 59, 1301 (1948); Chem. Abstr. 42, 7265g (1948)

- ⁵ K. L. Servis and K.-N. Fang, Tetrahedron Letters 967 (1968)
- ⁶ S. M. Kupchan and H. C. Wormser, Ibid. 359 (1965); J. Org. Chem. 30, 3792 (1965)
- ⁷ G. Volkans, J. Chem. Soc. 5554 (1963)
- ⁸ J. W. Cook, *Ibid.* 495 (1931)
- 9 W. V. Mayneord and E. M. F. Roe, Proc. Roy Soc. Sect. A 152, 320 (1935)
- ¹⁰ W. S. Rapson and R. G. Shuttleworth, J. Chem. Soc. 487 (1941)
- ¹¹ P. Ruggli and F. Brandt, Helv. Chim. Acta 27, 274 (1944)
- ¹² B. Chenon, L. C. Leitch, R. N. Renaud and L. Pichat, Bull. Soc. Chim. Fr. 38 (1964)
- ¹³ R. N. Renaud and L. C. Leitch, J. Labelled Compds 1, 34 (1965)